当前位置: 首页 >> 快讯
根号下x平方加y平方_根号下1加x平方的积分_天天微动态
来源:互联网     时间:2023-06-13 22:58:39


(相关资料图)

1、令x=1/t,则dx=-dt/t²原式=∫-√(1+t²)/t²*dt当t>0时,令t=tanθ,θ∈(0,π/2),则dt=sec²θdθ∫-√(1+t²)/t²*dt=-∫secθ/tan²θ*sec²θdθ=-∫secθ/tan²θ*(1+tan²θ)dθ=-∫secθdθ/tan²θ-∫secθdθ=-∫secθdθ-∫cos²θdθ/cosθsin²θ=-∫secθdθ-∫dsinθ/sin²θ=-ln|secθ+tanθ|+1/sinθ+C在Rt△ABC中,设∠C=90°,∠B=θ,BC=1,则AC=t,AB=√(t²+1)∴secθ=1/cosθ=√(t²+1),1/sinθ=√(t²+1)/t原式=-ln|√(t²+1)+t|+√(t²+1)/t+C=ln|√(t²+1)-t|+√(t²+1)/t+C=ln[√(1+1/x²)-1/x]+x√(1+1/x²)+C如果一个函数的积分存在,并且有限,就说这个函数是可积的。

2、一般来说,被积函数不一定只有一个变量,积分域也可以是不同维度的空间,甚至是没有直观几何意义的抽象空间。

3、扩展资料:对于一个函数f,如果在闭区间[a,b]上,无论怎样进行取样分割,只要它的子区间长度最大值足够小,函数f的黎曼和都会趋向于一个确定的值S,那么f在闭区间[a,b]上的黎曼积分存在,并且定义为黎曼和的极限S。

4、这时候称函数f为黎曼可积的。

5、这种逼近方式是将f的值域分割成等宽的区段,再考察每段的“长度”,用其测度表示,再乘以区段所在的高度。

6、函数的积分表示了函数在某个区域上的整体性质,改变函数某点的取值不会改变它的积分值。

7、对于黎曼可积的函数,改变有限个点的取值,其积分不变。

8、对于勒贝格可积的函数,某个测度为0的集合上的函数值改变,不会影响它的积分值。

9、参考资料来源:百度百科——积分。

本文到此分享完毕,希望对大家有所帮助。

标签: